

SyLVER: Symmetrically-structured Sparse Direct Solver

SyLVER

Contents:

	Introduction
	Purpose

	Usage overview

	Installation
	Quick Start

	Third-party libraries

	API (Fortran)
	General

	SpLDLT

	Data types

	API (C)
	General

	SpLDLT

	Data types

	Examples
	SpLDLT

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Purpose

SyLVER is a sparse direct solver for computing the solution of large
sparse symmetrically-structured linear systems of equations. This
includes both positive-definite and indefinite sparse symmetric
systems as well as unsymmetric system whose sparsity pattern is
symmetric.

The solution of the system of equations:

\[AX = B\]

is achived by computing a factorization of the input matrix.
the following cases are covered:

	\(A\) is symmetric positive-definite, we compute the
sparse Cholesky factorization:

\[PAP^T = LL^T\]

where the factor \(L\) is a lower triangular matrix and the matrix
\(P\) is a permutation matrix used to reduce the fill-in [https://en.wikipedia.org/wiki/Sparse_matrix#Reducing_fill-in]
generated during the factorization. Following the matrix factorization
the solution can be retrieved by successively solving the system
\(LY=PB\) (forward substitution) and \(L^{T}PX=Y\) (backward
substitutions).

2. \(A\) is symmetric indefinite, then we compute the
sparse \(LDL^T\) decomposition:

\[A = PLD(PL)^T\]

where \(P\) is a permutation matrix, \(L\) is unit lower triangular,
and \(D\) is block diagonal with blocks of size \(1 \times 1\)
and \(2 \times 2\).

The code optionally supports hybrid computation using one or more
NVIDIA GPUs.

SyLVER returns bit-compatible results.

An option exists to scale the matrix. In this case, the factorization
of the scaled matrix \(\overline{A} = S A S\) is computed, where
\(S\) is a diagonal scaling matrix.

Usage overview

Solving \(AX=B\) using SyLVER is a four stage process.

	If \(A\) is symmetric:

	Call spldlt_analyse() to perform a symbolic factorization, stored
in spldlt_akeep.

	Call spldlt_factor() to perform a numeric
factorization, stored in spldlt_fkeep. More than one numeric
factorization can refer to the same spldlt_akeep.

	Call spldlt__solve() to perform a solve with the
factors. More than one solve can be performed with the same
spldlt_fkeep.

	Once all desired solutions have been performed, free memory with
spldlt_free().

Note

The sylver_init() routine must be called before any other
routines whitin SyLVER. When all the desired operations have been
performed, the sylver_finalize() routine should be called.

Installation

Quick Start

Under Linux, or Mac OS X:

Get latest development version from github
git clone https://github.com/NLAFET/sylver
cd sylver

mkdir build # create build directory
cd build
configure compilation
cmake <path-to-source> -D SYLVER_RUNTIME=StarPU -D SYLVER_ENABLE_CUDA=ON
make # run compilation

Third-party libraries

SPRAL

SPRAL [https://github.com/ralna/spral] is an open-source library
for sparse linear algebra and associated algorithm and has several
important features used in SyLVER. By default, SPRAL is automatically
download and built during the installation of SyLVER. However, if you
wish to use your own version of SPRAL, which is not recommended, you
can use the instructions below to install it.

SPRAL installation

The installation instruction presented here are only useful if you
wish to install SPRAL as an internal package. By default SPRAL is
automatically downloaded and built during the installation of SyLVER.

The latest release of SPRAL can be found on its GitHub repository [https://github.com/ralna/spral/releases]. The compilation of SPRAL
is handled by autotools and for example can be done as follow when
using the GCC compilers:

cd spral
mkdir build
cd build
../configure CXX=g++ FC=gfortran CC=gcc CFLAGS="-g -O2 -march=native" CXXFLAGS="-g -O2 -march=native" FCFLAGS="-g -O2 -march=native" --with-metis="-L/path/to/metis -lmetis" --with-blas="-L/path/to/blas -lblas" --with-lapack="-L/path/to/lapack -llapack" --disable-openmp --disable-gpu
make

Note that the compilation flags used for SPRAL must match the
flags used in the compilation of SyLVER. Here we use the flags -g -O2
-march=native that correspond to the RelWithDebInfo build type in
SyLVER.

Here we use the --disable-openmp option because SyLVER works with
the serial version of SPRAL. Additionally, in this example we disabled
the compilation of the SPRAL GPU kernels using the --disable-gpu
option.

Sequential version of BLAS and LAPACK should be used. We recommend
using the MKL [https://software.intel.com/mkl] library for best
performance on Intel machines and ESSL [https://www.ibm.com/support/knowledgecenter/en/SSFHY8/essl_welcome.html]
on IBM machines. The MKL link line advisor [https://software.intel.com/en-us/articles/intel-mkl-link-line-advisor]
can be useful to fill the --with-blas and --with-lapack
options.

When compiling SyLVER you need to provide both the path to the SPRAL
source directory which can be given using the -D SPRAL_SRC_DIR
CMake option or the SPRAL_SRC_DIR environment variable and the
path to the SPRAL library which can be given using the -D SPRAL_DIR
CMake option or the SPRAL_DIR environment variable.

METIS

The MeTiS [http://glaros.dtc.umn.edu/gkhome/metis/metis/overview]
partitioning library is needed by the SPRAL library and therefore,
needed when linking the SyLVER package for building examples and test
drivers.

When compiling SyLVER you can provide the path to the MeTiS library
using either -D METIS_DIR CMake option or the METIS_DIR
environment variable.

hwloc

The hwloc [https://www.open-mpi.org/projects/hwloc/] library is
topology discovery library which is necessary for linking the examples
and test drivers if SPRAL was compiled with it. In this case, the
library path can be given to CMake using either the -D HWLOC_DIR
definition or the HWLOC_DIR environment variable.

Runtime system

The -D SYLVER_RUNTIME=StarPU enables the compilation of the
parallel version of SyLVER using StarPU runtime system [http://starpu.gforge.inria.fr/]. In this case the StarPU version
needs to be at least 1.3.0. The StarPU library is found with the
FindSTARPU.cmake script located in the cmake/Modules
directory. Note that, for this script to be able to find the StarPU
library, you need to set the environment variable STARPU_DIR to
the path of you StarPU install base directory.

BLAS and LAPACK

The BLAS and LAPACK libraries play an important role in the
performance of the solver. We recommend using the MKL [https://software.intel.com/mkl] library for best performance on
Intel machines and the ESSL [https://www.ibm.com/support/knowledgecenter/en/SSFHY8/essl_welcome.html]
library when running on IBM machines. Alternative BLAS and LAPACK
libraries include OpenBLAS [https://www.openblas.net/]. Note that
SyLVER should be linked against the sequential BLAS and LAPACK
libraries.

These libraries are found via the CMake scripts FindBLAS [https://cmake.org/cmake/help/latest/module/FindBLAS.html] and
FindLAPACK [https://cmake.org/cmake/help/latest/module/FindBLAS.html] and
therefore it is possible to use the options -D BLA_VENDOR to
indicate which libraries to use. For example:

cmake <path-to-source> -D BLA_VENDOR=Intel10_64lp_seq # configure compilation

selects and locates the sequential BLAS and LAPACK implementation for
the compilation and when linking test drivers, example and tests.

If CMake is unable to locate the requested libraries via the
-D BLA_VENDOR, it is still possible to give them explicitly using the
-D LBLAS and -D LLAPACK options. For example:

configure compilation
cmake <path-to-source> -D LBLAS="-L/path/to/blas -lblas" -D LLAPACK="-L/path/to/lapack -llapack"

API (Fortran)

In the below, all reals are double precision unless otherwise indicated.

General

	
subroutine sylver_init(ncpu, ngpu)

	Initialization routine which should be called before any other
routine within SyLVER. The number of CPUs and GPUs involved in the
computations should be passed to this routine.

	Parameters

	
	ncpu [integer,in] :: number of CPUs to be used in the
execution of SyLVER routines.

	ngpu [integer,in] :: number of GPUs to be used in the execution of
SyLVER routines. Note that if CUDA is not
enabled during the compilation, this value
will be ignored.

	
subroutine sylver_finalize()

	SyLVER termination routine which should be called once all the
desired operations have been performed.

SpLDLT

	
subroutine spldlt_analyse(akeep, n, ptr, row, options, inform[, order, val, ncpu, ngpu, check])

	Perform the analyse (symbolic) phase of the factorization for a
matrix supplied in Compressed Sparse Column (CSC) format [http://www.numerical.rl.ac.uk/spral/doc/latest/Fortran/csc_format.html]. The
resulting symbolic factors stored in spldlt_akeep should be passed
unaltered in the subsequent calls to spldlt_factorize().

	Parameters

	
	akeep [spldlt_akeep,out] :: returns symbolic factorization, to be
passed unchanged to subsequent routines.

	n [integer,in] :: number of columns in \(A\).

	ptr (n+1) [long,in] :: column pointers for \(A\) (see
CSC format [http://www.numerical.rl.ac.uk/spral/doc/latest/Fortran/csc_format.html]).

	row (ptr(n+1)-1) [integer,in] :: row indices for \(A\) (see
CSC format [http://www.numerical.rl.ac.uk/spral/doc/latest/Fortran/csc_format.html]).

	options [sylver_options,in] :: specifies algorithm options to be used
(see sylver_options).

	inform [sylver_inform,out] :: returns information about the
execution of the routine (see sylver_inform).

	Options

	
	order (n) [integer,inout] :: on entry a user-supplied ordering
(options%ordering=0). On return, the actual ordering used (if present).

	val (ptr(n+1)-1) [real,in] :: non-zero values for \(A\) (see
CSC format [http://www.numerical.rl.ac.uk/spral/doc/latest/Fortran/csc_format.html]). Only
used if a matching-based ordering is requested.

	ncpu [integer,in] :: Number of CPU available for the execution. If
absent, the value of ncpu passed to the
sylver_init() routine is used
instead.

	ncpu :: Number of GPU available for the
execution. This value is ignored if CUDA is
not enabled during the compilation and if
absent, the value of ncpu passed to the
sylver_init() routine is used
instead.

	check [logical,in] :: if true, matrix data is
checked. Out-of-range entries are dropped and duplicate entries
are summed.

Note

If a user-supplied ordering is used, it may be altered by this
routine, with the altered version returned in order(:). This
version will be equivalent to the original ordering, except that
some supernodes may have been amalgamated, a topological
ordering may have been applied to the assembly tree and the
order of columns within a supernode may have been adjusted to
improve cache locality.

	
subroutine spldlt_factorize(akeep, fkeep, posdef, val, options, inform[, scale, ptr, row])

	
	Parameters

	
	akeep [spldlt_akeep,out] :: symbolic factorization returned by
preceding call to spldlt_analyse().

	akeep :: returns numeric factorization, to be
passed unchanged to subsequent routines.

	posdef [logical,in] :: true if matrix is positive-definite.

	val (*) [real,in] :: non-zero values for \(A\) in same format
as for the call to spldlt_analyse().

	options [sylver_options,in] :: specifies algorithm options to be
used (see sylver_options).

	inform [sylver_inform,out] :: returns information about the
execution of the routine (see sylver_inform).

	Options

	
	scale (n) [real,inout] :: diagonal scaling. scale(i) contains entry
\(S_{ii}\) of \(S\). Must be supplied by user if
options%scaling=0 (user-supplied scaling). On exit, return scaling
used.

	ptr (n+1) [integer(long),in] :: column pointers for \(A\), only
required if scaling is required (options%scaling > 0) expect in
the case where matching-based ordering is done (options%scaling = 3)

	row (ptr(n+1)-1) [integer,in] :: row indices for \(A\), only
required if scaling is required (options%scaling > 0) expect in
the case where matching-based ordering is done (options%scaling
= 3)

	
subroutine spldlt_solve(akeep, fkeep, nrhs, x, ldx, options, inform[, job])

	Solve (for \(nrhs\) right-hand sides) one of the following
equations:

	job

	Equation solved

	0 (or absent)

	\(AX=B\)

	1

	\(PLX=SB\)

	2

	\(DX=B\)

	3

	\((PL)^TS^{-1}X=B\)

	4

	\(D(PL)^TS^{-1}X=B\)

Recall \(A\) has been factorized as either:

	\(SAS = (PL)(PL)^T~\) (positive-definite case); or

	\(SAS = (PL)D(PL)^T\) (indefinite case).

	Parameters

	
	akeep [spldlt_akeep,in] :: symbolic factorization returned by preceding
call to spldlt_analyse()

	fkeep [spldlt_fkeep,in] :: numeric factorization returned by preceding
call to spldlt_factor().

	nrhs [integer,in] :: number of right-hand sides.

	x (ldx,nrhs) [real,inout] :: right-hand sides \(B\) on entry,
solutions \(X\) on exit.

	ldx [integer,in] :: leading dimension of x.

	options [sylver_options,in] :: specifies algorithm options to be used
(see sylver_options).

	inform [sylver_inform,out] :: returns information about the
execution of the routine (see sylver_inform).

	Options

	job [integer,in] :: specifies equation to solve, as per above table.

Data types

Options

	
type sylver_options

	The derived data type sylver_options is used to specify the
options used within SyLVER. The components, that are
automatically given default values in the definition of the type,
are:

	Type fields

	
	% print_level [integer,default=0] :: the level of printing. The different
levels are:

	< 0

	No printing.

	= 0

	Error and warning messages only.

	= 1

	As 0, plus basic diagnostic printing.

	> 1

	As 1, plus some additional diagnostic printing.

	% unit_diagnostics [integer,default=6] :: Fortran unit number for
diagnostics printing. Printing is suppressed if <0.

	% unit_error [integer,default=6] :: Fortran unit number for printing of
error messages. Printing is suppressed if <0.

	% unit_warning [integer,default=6] :: Fortran unit number for printing of
warning messages. Printing is suppressed if <0.

	% ordering [integer,default=1] :: Ordering method to use in analyse phase:

	0

	User-supplied ordering is used (order argument to
spldlt_analyse() or
splu_analyse()).

	1 (default)

	METIS ordering with default settings.

	2

	Matching-based elimination ordering is computed (the
Hungarian algorithm is used to identify large
off-diagonal entries. A restricted METIS ordering is
then used that forces these on to the subdiagonal).

Note: This option should only be chosen for
indefinite systems. A scaling is also computed that may
be used in spldlt_factor() or
splu_factor() (see %scaling below).

	% nemin [integer,default=32] :: supernode amalgamation threshold. Two
neighbours in the elimination tree are merged if they both involve fewer
than nemin eliminations. The default is used if nemin<1.

	% use_gpu [logical,default=true] :: Use an NVIDIA GPU if present.

	% scaling [integer,default=0] :: scaling algorithm to use:

	<=0 (default)

	No scaling (if scale(:) is not present on call to
spldlt_factor() or splu_factor(),
or user-supplied scaling (if scale(:) is present).

	=1

	Compute using weighted bipartite matching via the
Hungarian Algorithm (MC64 algorithm).

	=2

	Compute using a weighted bipartite matching via the
Auction Algorithm (may be lower quality than that
computed using the Hungarian Algorithm, but can be
considerably faster).

	=3

	Use matching-based ordering generated during the
analyse phase using options%ordering=2. The scaling
will be the same as that generated with
options%scaling= 1 if the matrix values have not
changed. This option will generate an error if a
matching-based ordering was not used during analysis.

	>=4

	Compute using the norm-equilibration algorithm of
Ruiz.

	% nb [integer,default=256] :: Block size to use for
parallelization of large nodes on CPU resources.

	% pivot_method [integer,default=1] :: Pivot method to be used on CPU, one of:

	0

	Aggressive a posteori pivoting. Cholesky-like
communication pattern is used, but a single failed pivot
requires restart of node factorization and potential
recalculation of all uneliminated entries.

	1 (default)

	Block a posteori pivoting. A failed pivot only requires
recalculation of entries within its own block column.

	2

	Threshold partial pivoting. Not parallel.

	% small [real,default=1d-20] :: threshold below which an entry is treated as
equivalent to 0.0.

	% u [real,default=0.01] :: relative pivot threshold used in symmetric
indefinite case. Values outside of the range \([0,0.5]\) are treated
as the closest value in that range.

Information

	
type sylver_inform

	The derived data type sylver_inform is used to return
information about the progress and needs of the algorithm that
might be of interest for the user.

	Type fields

	
	% flag [integer] :: exit status of the algorithm (see table below).

	% cublas_error [integer] :: CUBLAS error code in the event of a CUBLAS error
(0 otherwise).

	% cuda_error [integer] :: CUDA error code in the event of a CUDA error
(0 otherwise). Note that due to asynchronous execution, CUDA errors may
not be reported by the call that caused them.

	% matrix_dup [integer] :: number of duplicate entries encountered (if
spldlt_analyse() or splu_analyse() called with
check=true).

	% matrix_missing_diag [integer] :: number of diagonal entries without
an explicit value (if spldlt_analyse() or
splu_analyse() called with check=true).

	% matrix_outrange [integer] :: number of out-of-range entries
encountered (if spldlt_analyse() or
splu_analyse() called with check=true).

	% matrix_rank [integer] :: (estimated) rank (structural after analyse
phase, numerical after factorize phase).

	% maxdepth [integer] :: maximum depth of the assembly tree.

	% maxfront [integer] :: maximum front size (without pivoting after
analyse phase, with pivoting after factorize phase).

	% num_delay [integer] :: number of delayed pivots. That is, the total
number of fully-summed variables that were passed to the father node
because of stability considerations. If a variable is passed further
up the tree, it will be counted again.

	% num_factor [long] :: number of entries in \(L\)
(without pivoting after analyse phase, with pivoting after
factorize phase).

	% num_flops [long] :: number of
floating-point operations for Cholesky factorization (indefinte
needs slightly more). Without pivoting after analyse phase, with
pivoting after factorize phase.

	% num_neg [integer] :: number of negative eigenvalues of the matrix
\(D\) after factorize phase.

	% num_sup [integer] :: number of supernodes in assembly tree.

	% num_two [integer] :: number of \(2 \times 2\) pivots used by the
factorization (i.e. in the matrix \(D\) in the indefinite

case).

	% stat [integer] :: Fortran allocation status parameter in event of
allocation error (0 otherwise).

	inform%flag

	Return status

	0

	Success.

	-1

	Error in sequence of calls (may be caused by failure of a
preceding call).

	-2

	n<0 or ne<1.

	-3

	Error in ptr(:).

	-4

	CSC format: All variable indices in one or more columns are
out-of-range.

Coordinate format: All entries are out-of-range.

	-5

	Matrix is singular and options%action=.false.

	-6

	Matrix found not to be positive definite but posdef=true.

	-7

	ptr(:) and/or row(:) not present although required.

	-8

	options%ordering out of range, or options%ordering=0 and
order parameter not provided or not a valid permutation.

	-9

	options%ordering=-2 but val(:) was not supplied.

	-10

	ldx<n or nrhs<1.

	-11

	job is out-of-range.

	-13

	Called spldlt_enquire_posdef() on indefinite
factorization.

	-14

	Called spldlt_enquire_indef() on positive-definite
factorization.

	-15

	options%scaling=3 but a matching-based ordering was not
performed during analyse phase.

	-50

	Allocation error. If available, the stat parameter is
returned in inform%stat.

	-51

	CUDA error. The CUDA error return value is returned in
inform%cuda_error.

	-52

	CUBLAS error. The CUBLAS error return value is returned in
inform%cublas_error.

	+1

	Out-of-range variable indices found and ignored in input
data. inform%matrix_outrange is set to the number of such
entries.

	+2

	Duplicate entries found and summed in input data.
inform%matrix_dup is set to the number of such entries.

	+3

	Combination of +1 and +2.

	+4

	One or more diagonal entries of \(A\) are missing.

	+5

	Combination of +4 and +1 or +2.

	+6

	Matrix is found be (structurally) singular during analyse
phase. This will overwrite any of the above warning flags.

	+7

	Matrix is found to be singular during factorize phase.

	+8

	Matching-based scaling found as side-effect of
matching-based ordering ignored
(consider setting options%scaling=3).

API (C)

#include "sylver/sylver.h"

General

	
void sylver_init(int ncpu, int ngpu)

	Initialization routine which should be called before any other
routine within SyLVER. The number of CPUs and GPUs involved in the
computations should be passed to this routine.

	Parameters

	
	ncpu – number of CPUs to be used in the execution of SyLVER
routines.

	ngpu – number of GPUs to be used in the execution of SyLVER
routines. Note that if CUDA is not enabled during the
compilation, this value will be ignored.

	
void sylver_finalize()

	SyLVER termination routine which should be called once all the
desired operations have been performed.

	
void sylver_default_options(sylver_options_t *options)

	Intialises members of options structure to default values.

	Parameters

	
	options – Structure to be initialised.

SpLDLT

Note

For the most efficient use of the package, CSC format should be
used without checking.

	
void spldlt_analyse(int n, int *order, long const* ptr, int const* row, double const* val, void **akeep, bool check, sylver_options_t const* options, sylver_inform_t *inform)

	Perform the analyse (symbolic) phase of the factorization for a
matrix supplied in Compressed Sparse Column (CSC) format [http://www.numerical.rl.ac.uk/spral/doc/latest/Fortran/csc_format.html]. The
resulting symbolic factors stored in akeep should be
passed unaltered in the subsequent calls to
spldlt_factorize().

	Parameters

	
	n – number of columns in \(A\).

	order[] – may be NULL; otherwise must be an array of size n
used on entry a user-supplied ordering
(options.ordering=0). On
return, the actual ordering used.

	ptr[n+1] – column pointers for \(A\) (see CSC format [http://www.numerical.rl.ac.uk/spral/doc/latest/Fortran/csc_format.html]).

	row[ptr[n]] – row indices for \(A\) (see
CSC format [http://www.numerical.rl.ac.uk/spral/doc/latest/Fortran/csc_format.html]).

	val – may be NULL; otherwise must be an array of size
ptr[n] containing non-zero values for \(A\) (see CSC
format [http://www.numerical.rl.ac.uk/spral/doc/latest/Fortran/csc_format.html]). Only
used if a matching-based ordering is requested.

	akeep – returns symbolic factorization, to be passed
unchanged to subsequent routines.

	check – if true, matrix data is checked. Out-of-range entries
are dropped and duplicate entries are summed.

	options – specifies algorithm options to be used (see
sylver_options_t).

	inform – returns information about the execution of the
routine (see sylver_inform_t).

Note

If a user-supplied ordering is used, it may be altered by this
routine, with the altered version returned in order[]. This
version will be equivalent to the original ordering, except that
some supernodes may have been amalgamated, a topologic ordering
may have been applied to the assembly tree and the order of
columns within a supernode may have been adjusted to improve
cache locality.

	
void spldlt_factorize(bool posdef, long const* ptr, int const* row, double const* val, double *scale, void *akeep, void **fkeep, sylver_options_t const* options, sylver_inform_t *inform)

	
	Parameters

	
	posdef – true if matrix is positive-definite

	ptr – may be NULL; otherwise a length n+1 array of column
pointers for \(A\), only required if akeep was
obtained by running spldlt_analyse() with
check=true, in which case it must be unchanged since that
call.

	row – may be NULL; otherwise a length ptr[n] array of row
indices for \(A\), only required if akeep was
obtained by running spldlt_analyse() with
check=true, in which case it must be unchanged since that
call.

	val[] – non-zero values for \(A\) in same format as for
the call to spldlt_analyse().

	scale – may be NULL; otherwise a length n array for
diagonal scaling. scale[i-1] contains entry \(S_ii\) of
\(S\). Must be supplied by user on entry if
options.scaling=0
(user-supplied scaling). On exit, returns scaling used.

	akeep – symbolic factorization returned by preceding call to
spldlt_analyse().

	fkeep – returns numeric factorization, to be passed unchanged
to subsequent routines.

	options – specifies algorithm options to be used
(see sylver_options_t).

	inform – returns information about the execution of the routine
(see sylver_inform_t).

	
void spldlt_solve(int job, int nrhs, double *x, int ldx, void *akeep, void *fkeep, sylver_options_t const* options, sylver_inform_t *inform)

	Solve (for nrhs right-hand sides) one of the following equations:

	job

	Equation solved

	0

	\(AX=B\)

	1

	\(PLX=SB\)

	2

	\(DX=B\)

	3

	\((PL)^TS^{-1}X=B\)

	4

	\(D(PL)^TS^{-1}X=B\)

Recall \(A\) has been factorized as either:

	\(SAS = (PL)(PL)^T~\) (positive-definite case); or

	\(SAS = (PL)D(PL)^T\) (indefinite case).

	Parameters

	
	job – specifies equation to solve, as per above table.

	nrhs – number of right-hand sides.

	x[ldx*nrhs] – right-hand sides \(B\) on entry, solutions
\(X\) on exit. The i-th entry of right-hand side j is in
position x[j*ldx+i].

	ldx – leading dimension of x.

	akeep – symbolic factorization returned by preceding call to
spldlt_analyse().

	fkeep – numeric factorization returned by preceding call to
spldlt_factor().

	options – specifies algorithm options to be used (see
sylver_options_t).

	inform – returns information about the execution of the
routine (see sylver_inform_t).

	
void spldlt_free_akeep(void **akeep)

	Frees memory and resources associated with akeep.

	Parameters

	
	akeep – symbolic factors to be freed.

	
int spldlt_free_fkeep(void **fkeep)

	Frees memory and resources associated with fkeep.

	Parameters

	
	fkeep – numeric factors to be freed.

Data types

Options

	
struct sylver_options_t

	The data type sylver_options_t is used to specify the
options used within SyLVER. The components, that are
automatically given default values in the definition of the type,
are:

	
int print_level

	Level of printing:

	< 0

	No printing.

	= 0 (default)

	Error and warning messages only.

	= 1

	As 0, plus basic diagnostic printing.

	> 1

	As 1, plus some additional diagnostic printing.

The default is 0.

	
int unit_diagnostics

	Fortran unit number for diagnostics printing.
Printing is suppressed if <0.

The default is 6 (stdout).

	
int unit_error

	Fortran unit number for printing of error messages.
Printing is suppressed if <0.

The default is 6 (stdout).

	
int unit_warning

	Fortran unit number for printing of warning messages.
Printing is suppressed if <0.

The default is 6 (stdout).

	
int ordering

	Ordering method to use in analyse phase:

	0

	User-supplied ordering is used (order argument to
sylver_analyse()).

	1 (default)

	METIS ordering with default settings.

	2

	Matching-based elimination ordering is computed (the
Hungarian algorithm is used to identify large
off-diagonal entries. A restricted METIS ordering is
then used that forces these on to the subdiagonal).

Note: This option should only be chosen for
indefinite systems. A scaling is also computed that may
be used in sylver_factor() (see
scaling
below).

The default is 1.

	
int nemin

	Supernode amalgamation threshold. Two neighbours in the elimination tree
are merged if they both involve fewer than nemin eliminations.
The default is used if nemin<1.
The default is 8.

	
bool prune_tree

	If true, prune the elimination tree to better exploit data
locality in the parallel factorization.

The default is true.

	
long min_gpu_work

	Minimum number of flops in subtree before scheduling on GPU.

Default is 5e9.

	
int scaling

	Scaling algorithm to use:

	<=0 (default)

	No scaling (if scale[] is not present on call to
spldlt_factor(), or user-supplied
scaling (if scale[] is present).

	=1

	Compute using weighted bipartite matching via the
Hungarian Algorithm (MC64 algorithm).

	=2

	Compute using a weighted bipartite matching via the
Auction Algorithm (may be lower quality than that
computed using the Hungarian Algorithm, but can be
considerably faster).

	=3

	Use matching-based ordering generated during the
analyse phase using options.ordering=2. The scaling
will be the same as that generated with
options.scaling=1
if the matrix values have not changed. This option
will generate an error if a matching-based ordering
was not used during analysis.

	>=4

	Compute using the norm-equilibration algorithm of
Ruiz (see scaling).

The default is 0.

	
int pivot_method

	Pivot method to be used on CPU, one of:

	2 (default)

	Block a posteori pivoting. A failed pivot only requires
recalculation of entries within its own block column.

	3

	Threshold partial pivoting. Not parallel.

Default is 2.

	
double small

	Threshold below which an entry is treated as equivalent to
0.0.

The default is 1e-20.

	
double u

	Relative pivot threshold used in symmetric indefinite
case. Values outside of the range \([0,0.5]\) are treated as
the closest value in that range.

The default is 0.01.

	
long small_subtree_threshold

	Maximum number of flops in a subtree treated as a single
task.

The default is 4e6.

	
int nb

	Block size to use for parallelization of large nodes on CPU
resources.

Default is 256.

	
int cpu_topology

	

	1 (default)

	Automatically chose the CPU tology depending on the
underlying architecture.

	2

	Assume flat topology and in particular ignore NUMA
structure.

	3

	Use NUMA structure of underlying architecture to better
exploit data locality in the parallel execution

Default is 1.

	
bool action

	Continue factorization of singular matrix on discovery of zero
pivot if true (a warning is issued), or abort if false.

The default is true.

	
bool use_gpu

	Use an NVIDIA GPU if present.

Default is true.

	
float gpu_perf_coeff

	GPU perfromance coefficient. How many times faster a GPU is than
CPU at factoring a subtree.

Default is 1.0.

Information

	
struct sylver_inform_t

	Used to return information about the progress and needs of the
algorithm.

	
int flag

	Exit status of the algorithm (see table below).

	
int matrix_dup

	Number of duplicate entries encountered (if
spldlt_analyse() called with check=true).

	
int matrix_missing_diag

	Number of diagonal entries without an explicit value (if
spldlt_analyse() called with check=true).

	
int matrix_outrange

	Number of out-of-range entries encountered (if
spldlt_analyse() called with check=true).

	
int matrix_rank

	(Estimated) rank (structural after analyse phase, numerical
after factorize phase).

	
int maxdepth

	Maximum depth of the assembly tree.

	
int maxfront

	Maximum front size (without pivoting after analyse phase, with
pivoting after factorize phase).

	
int num_delay

	Number of delayed pivots. That is, the total number of
fully-summed variables that were passed to the father node
because of stability considerations. If a variable is passed
further up the tree, it will be counted again.

	
long num_factor

	Number of entries in \(L\) (without pivoting after analyse
phase, with pivoting after factorize phase).

	
long num_flops

	Number of floating-point operations for Cholesky factorization
(indefinte needs slightly more). Without pivoting after analyse
phase, with pivoting after factorize phase.

	
int num_neg

	Number of negative eigenvalues of the matrix \(D\) after
factorize phase.

	
int num_sup

	Number of supernodes in assembly tree.

	
int num_two

	Number of \(2 \times 2\) pivots used by the factorization
(i.e. in the matrix \(D\)).

	
int stat

	Fortran allocation status parameter in event of allocation error
(0 otherwise).

	inform.flag

	Return status

	0

	Success.

	-1

	Error in sequence of calls (may be caused by failure of a
preceding call).

	-2

	n<0 or ne<1.

	-3

	Error in ptr[].

	-4

	CSC format: All variable indices in one or more columns are
out-of-range.

Coordinate format: All entries are out-of-range.

	-5

	Matrix is singular and options.action=false

	-6

	Matrix found not to be positive definite.

	-7

	ptr[] and/or row[] not present, but required as
spldlt_analyse() was called with check=false.

	-8

	options.ordering out of range, or options.ordering=0 and
order parameter not provided or not a valid permutation.

	-9

	options.ordering=-2 but val[] was not supplied.

	-10

	ldx<n or nrhs<1.

	-11

	job is out-of-range.

	-13

	Called spldlt_enquire_posdef() on indefinite
factorization.

	-14

	Called spldlt_enquire_indef() on
positive-definite factorization.

	-15

	options.scaling=3 but a matching-based ordering was not
performed during analyse phase.

	-50

	Allocation error. If available, the stat parameter is
returned in inform.stat.

	-51

	CUDA error. The CUDA error return value is returned in
inform.cuda_error.

	-52

	CUBLAS error. The CUBLAS error return value is returned in
inform.cublas_error.

	+1

	Out-of-range variable indices found and ignored in input
data. inform.matrix_outrange is set to the number of such
entries.

	+2

	Duplicate entries found and summed in input data.
inform.matrix_dup is set to the number of such entries.

	+3

	Combination of +1 and +2.

	+4

	One or more diagonal entries of \(A\) are missing.

	+5

	Combination of +4 and +1 or +2.

	+6

	Matrix is found be (structurally) singular during analyse
phase. This will overwrite any of the above warning flags.

	+7

	Matrix is found to be singular during factorize phase.

	+8

	Matching-based scaling found as side-effect of
matching-based ordering ignored
(consider setting options.scaling=3).

	+50

	OpenMP processor binding is disabled. Consider setting
the environment variable OMP_PROC_BIND=true (this may
affect performance on NUMA systems).

	
int cuda_error

	CUDA error code in the event of a CUDA error (0 otherwise).
Note that due to asynchronous execution, CUDA errors may not be
reported by the call that caused them.

	
int cublas_error

	cuBLAS error code in the event of a cuBLAS error (0 otherwise).

Examples

SpLDLT

Suppose we wish to factorize the matrix

\[\begin{split}A = \left(\begin{array}{ccccc}
 2. & 1. \\
 1. & 4. & 1. & & 1. \\
 & 1. & 3. & 2. \\
 & & 2. & -1.& \\
 & 1. & & & 2.
\end{array}\right)\end{split}\]

and then solve for the right-hand side

\[\begin{split}B = \left(\begin{array}{c}
 4. \\
 17. \\
 19. \\
 2. \\
 12.
\end{array}\right).\end{split}\]

The following code may be used.

program spldlt_example
 use sylver_mod
 implicit none

 ! Derived types
 type (spldlt_akeep_type) :: akeep
 type (spldlt_fkeep_type) :: fkeep
 type (sylver_options) :: options
 type (sylver_inform) :: inform

 ! Parameters
 !integer, parameter :: long = selected_int_kind(16)
 !integer, parameter :: wp = kind(0.0d0)

 ! Matrix data
 logical :: posdef
 integer :: n, row(9)
 integer(long) :: ptr(6)
 real(wp) :: val(9)

 ! Other variables
 integer :: ncpu, ngpu
 integer :: nrhs
 real(wp) :: x(5)

 ! Data for matrix:
 ! (2 1)
 ! (1 4 1 1)
 ! (1 3 2)
 ! (2 -1)
 ! (1 2)
 posdef = .false.
 n = 5
 ptr(1:n+1) = (/ 1, 3, 6, 8, 9, 10 /)
 row(1:ptr(n+1)-1) = (/ 1, 2, 2, 3, 5, 3, 4, 4, 5 /)
 val(1:ptr(n+1)-1) = (/ 2.0, 1.0, 4.0, 1.0, 1.0, 3.0, 2.0, -1.0, 2.0 /)

 ! The right-hand side with solution (1.0, 2.0, 3.0, 4.0, 5.0)
 nrhs = 1
 x(1:n) = (/ 4.0, 17.0, 19.0, 2.0, 12.0 /)

 ncpu = 8
 ngpu = 0

 call sylver_init(ncpu, ngpu)

 ! Perform analyse and factorize
 call spldlt_analyse(akeep, n, ptr, row, options, inform, ncpu=ncpu, ngpu=ngpu)
 if(inform%flag<0) go to 100

 call spldlt_factorize(akeep, fkeep, posdef, val, options, inform)
 if(inform%flag<0) go to 100

 call spldlt_solve(akeep, fkeep, nrhs, x, n, options, inform)
 if(inform%flag<0) go to 100
 write(*,'(a,/,(3es18.10))') ' The computed solution is:', x(1:n)

 call sylver_finalize()

100 continue
 call spldlt_akeep_free(akeep)
 call spldlt_fkeep_free(fkeep)

end program spldlt_example

This produces the following output:

The computed solution is:
 1.0000000000E+00 2.0000000000E+00 3.0000000000E+00
 4.0000000000E+00 5.0000000000E+00
Pivot order: -3 4 -1 0 -2

Index

 S

S

 	
 	spldlt_analyse (C function)

 	spldlt_analyse() (fortran subroutine)

 	spldlt_factorize (C function)

 	spldlt_factorize() (fortran subroutine)

 	spldlt_free_akeep (C function)

 	spldlt_free_fkeep (C function)

 	spldlt_solve (C function)

 	spldlt_solve() (fortran subroutine)

 	sylver_default_options (C function)

 	sylver_finalize (C function)

 	sylver_finalize() (fortran subroutine)

 	sylver_inform (fortran type), [1]

 	sylver_inform_t (C type)

 	sylver_inform_t.cublas_error (C member)

 	sylver_inform_t.cuda_error (C member)

 	sylver_inform_t.flag (C member)

 	sylver_inform_t.matrix_dup (C member)

 	sylver_inform_t.matrix_missing_diag (C member)

 	sylver_inform_t.matrix_outrange (C member)

 	sylver_inform_t.matrix_rank (C member)

 	sylver_inform_t.maxdepth (C member)

 	sylver_inform_t.maxfront (C member)

 	sylver_inform_t.num_delay (C member)

 	sylver_inform_t.num_factor (C member)

 	sylver_inform_t.num_flops (C member)

 	
 	sylver_inform_t.num_neg (C member)

 	sylver_inform_t.num_sup (C member)

 	sylver_inform_t.num_two (C member)

 	sylver_inform_t.stat (C member)

 	sylver_init (C function)

 	sylver_init() (fortran subroutine)

 	sylver_options (fortran type), [1]

 	sylver_options_t (C type)

 	sylver_options_t.action (C member)

 	sylver_options_t.cpu_topology (C member)

 	sylver_options_t.gpu_perf_coeff (C member)

 	sylver_options_t.min_gpu_work (C member)

 	sylver_options_t.nb (C member)

 	sylver_options_t.nemin (C member)

 	sylver_options_t.ordering (C member)

 	sylver_options_t.pivot_method (C member)

 	sylver_options_t.print_level (C member)

 	sylver_options_t.prune_tree (C member)

 	sylver_options_t.scaling (C member)

 	sylver_options_t.small (C member)

 	sylver_options_t.small_subtree_threshold (C member)

 	sylver_options_t.u (C member)

 	sylver_options_t.unit_diagnostics (C member)

 	sylver_options_t.unit_error (C member)

 	sylver_options_t.unit_warning (C member)

 	sylver_options_t.use_gpu (C member)

Purpose

SyLVER is a sparse direct solver for computing the solution of large
sparse symmetrically-structured linear systems of equations. This
includes both positive-definite and indefinite sparse symmetric
systems as well as unsymmetric system whose sparsity pattern is
symmetric.

The solution of the system of equations:

\[AX = B\]

is achived by computing a factorization of the input matrix.
the following cases are covered:

	\(A\) is symmetric positive-definite, we compute the
sparse Cholesky factorization:

\[PAP^T = LL^T\]

where the factor \(L\) is a lower triangular matrix and the matrix
\(P\) is a permutation matrix used to reduce the fill-in [https://en.wikipedia.org/wiki/Sparse_matrix#Reducing_fill-in]
generated during the factorization. Following the matrix factorization
the solution can be retrieved by successively solving the system
\(LY=PB\) (forward substitution) and \(L^{T}PX=Y\) (backward
substitutions).

2. \(A\) is symmetric indefinite, then we compute the
sparse \(LDL^T\) decomposition:

\[A = PLD(PL)^T\]

where \(P\) is a permutation matrix, \(L\) is unit lower triangular,
and \(D\) is block diagonal with blocks of size \(1 \times 1\)
and \(2 \times 2\).

3. \(A\) is unsymmetric, then we compute the sparse :math
LU decomposition:

\[P_sAP_s^T = P_nLUQ_n\]

where \(P_s\) is a permutation matrix corresponding to the
fill-reducing permutation whereas \(P_n\) and \(Q_n\) are
meant to improve the numerical property of the factorization
algorithm. \(L\) is lower triangular, and \(U\) is unit upper
triangular.

The code optionally supports hybrid computation using one or more
NVIDIA GPUs.

SyLVER returns bit-compatible results.

An option exists to scale the matrix. In this case, the factorization
of the scaled matrix \(\overline{A} = S A S\) is computed, where
\(S\) is a diagonal scaling matrix.

Data types

Options

	
type sylver_options

	The derived data type sylver_options is used to specify the
options used within SyLVER. The components, that are
automatically given default values in the definition of the type,
are:

	Type fields

	
	% print_level [integer,default=0] :: the level of printing. The different
levels are:

	< 0

	No printing.

	= 0

	Error and warning messages only.

	= 1

	As 0, plus basic diagnostic printing.

	> 1

	As 1, plus some additional diagnostic printing.

	% unit_diagnostics [integer,default=6] :: Fortran unit number for
diagnostics printing. Printing is suppressed if <0.

	% unit_error [integer,default=6] :: Fortran unit number for printing of
error messages. Printing is suppressed if <0.

	% unit_warning [integer,default=6] :: Fortran unit number for printing of
warning messages. Printing is suppressed if <0.

	% ordering [integer,default=1] :: Ordering method to use in analyse phase:

	0

	User-supplied ordering is used (order argument to
spldlt_analyse() or
splu_analyse()).

	1 (default)

	METIS ordering with default settings.

	2

	Matching-based elimination ordering is computed (the
Hungarian algorithm is used to identify large
off-diagonal entries. A restricted METIS ordering is
then used that forces these on to the subdiagonal).

Note: This option should only be chosen for
indefinite systems. A scaling is also computed that may
be used in spldlt_factor() or
splu_factor() (see %scaling below).

	% nemin [integer,default=32] :: supernode amalgamation threshold. Two
neighbours in the elimination tree are merged if they both involve fewer
than nemin eliminations. The default is used if nemin<1.

	% use_gpu [logical,default=true] :: Use an NVIDIA GPU if present.

	% scaling [integer,default=0] :: scaling algorithm to use:

	<=0 (default)

	No scaling (if scale(:) is not present on call to
spldlt_factor() or splu_factor(),
or user-supplied scaling (if scale(:) is present).

	=1

	Compute using weighted bipartite matching via the
Hungarian Algorithm (MC64 algorithm).

	=2

	Compute using a weighted bipartite matching via the
Auction Algorithm (may be lower quality than that
computed using the Hungarian Algorithm, but can be
considerably faster).

	=3

	Use matching-based ordering generated during the
analyse phase using options%ordering=2. The scaling
will be the same as that generated with
options%scaling= 1 if the matrix values have not
changed. This option will generate an error if a
matching-based ordering was not used during analysis.

	>=4

	Compute using the norm-equilibration algorithm of
Ruiz.

	% nb [integer,default=256] :: Block size to use for
parallelization of large nodes on CPU resources.

	% pivot_method [integer,default=1] :: Pivot method to be used on CPU, one of:

	0

	Aggressive a posteori pivoting. Cholesky-like
communication pattern is used, but a single failed pivot
requires restart of node factorization and potential
recalculation of all uneliminated entries.

	1 (default)

	Block a posteori pivoting. A failed pivot only requires
recalculation of entries within its own block column.

	2

	Threshold partial pivoting. Not parallel.

	% small [real,default=1d-20] :: threshold below which an entry is treated as
equivalent to 0.0.

	% u [real,default=0.01] :: relative pivot threshold used in symmetric
indefinite case. Values outside of the range \([0,0.5]\) are treated
as the closest value in that range.

Information

	
type sylver_inform

	The derived data type sylver_inform is used to return
information about the progress and needs of the algorithm that
might be of interest for the user.

	Type fields

	
	% flag [integer] :: exit status of the algorithm (see table below).

	% cublas_error [integer] :: CUBLAS error code in the event of a CUBLAS error
(0 otherwise).

	% cuda_error [integer] :: CUDA error code in the event of a CUDA error
(0 otherwise). Note that due to asynchronous execution, CUDA errors may
not be reported by the call that caused them.

	% matrix_dup [integer] :: number of duplicate entries encountered (if
spldlt_analyse() or splu_analyse() called with
check=true).

	% matrix_missing_diag [integer] :: number of diagonal entries without
an explicit value (if spldlt_analyse() or
splu_analyse() called with check=true).

	% matrix_outrange [integer] :: number of out-of-range entries
encountered (if spldlt_analyse() or
splu_analyse() called with check=true).

	% matrix_rank [integer] :: (estimated) rank (structural after analyse
phase, numerical after factorize phase).

	% maxdepth [integer] :: maximum depth of the assembly tree.

	% maxfront [integer] :: maximum front size (without pivoting after
analyse phase, with pivoting after factorize phase).

	% num_delay [integer] :: number of delayed pivots. That is, the total
number of fully-summed variables that were passed to the father node
because of stability considerations. If a variable is passed further
up the tree, it will be counted again.

	% num_factor [long] :: number of entries in \(L\)
(without pivoting after analyse phase, with pivoting after
factorize phase).

	% num_flops [long] :: number of
floating-point operations for Cholesky factorization (indefinte
needs slightly more). Without pivoting after analyse phase, with
pivoting after factorize phase.

	% num_neg [integer] :: number of negative eigenvalues of the matrix
\(D\) after factorize phase.

	% num_sup [integer] :: number of supernodes in assembly tree.

	% num_two [integer] :: number of \(2 \times 2\) pivots used by the
factorization (i.e. in the matrix \(D\) in the indefinite

case).

	% stat [integer] :: Fortran allocation status parameter in event of
allocation error (0 otherwise).

	inform%flag

	Return status

	0

	Success.

	-1

	Error in sequence of calls (may be caused by failure of a
preceding call).

	-2

	n<0 or ne<1.

	-3

	Error in ptr(:).

	-4

	CSC format: All variable indices in one or more columns are
out-of-range.

Coordinate format: All entries are out-of-range.

	-5

	Matrix is singular and options%action=.false.

	-6

	Matrix found not to be positive definite but posdef=true.

	-7

	ptr(:) and/or row(:) not present although required.

	-8

	options%ordering out of range, or options%ordering=0 and
order parameter not provided or not a valid permutation.

	-9

	options%ordering=-2 but val(:) was not supplied.

	-10

	ldx<n or nrhs<1.

	-11

	job is out-of-range.

	-13

	Called spldlt_enquire_posdef() on indefinite
factorization.

	-14

	Called spldlt_enquire_indef() on positive-definite
factorization.

	-15

	options%scaling=3 but a matching-based ordering was not
performed during analyse phase.

	-50

	Allocation error. If available, the stat parameter is
returned in inform%stat.

	-51

	CUDA error. The CUDA error return value is returned in
inform%cuda_error.

	-52

	CUBLAS error. The CUBLAS error return value is returned in
inform%cublas_error.

	+1

	Out-of-range variable indices found and ignored in input
data. inform%matrix_outrange is set to the number of such
entries.

	+2

	Duplicate entries found and summed in input data.
inform%matrix_dup is set to the number of such entries.

	+3

	Combination of +1 and +2.

	+4

	One or more diagonal entries of \(A\) are missing.

	+5

	Combination of +4 and +1 or +2.

	+6

	Matrix is found be (structurally) singular during analyse
phase. This will overwrite any of the above warning flags.

	+7

	Matrix is found to be singular during factorize phase.

	+8

	Matching-based scaling found as side-effect of
matching-based ordering ignored
(consider setting options%scaling=3).

Usage overview

For Solving \(AX=B\) using SyLVER is a four stage process.

	If \(A\) is symmetric:

	Call spldlt_analyse() to perform a symbolic factorization, stored
in spldlt_akeep.

	Call spldlt_factor() to perform a numeric
factorization, stored in spldlt_fkeep. More than one numeric
factorization can refer to the same spldlt_akeep.

	Call spldlt__solve() to perform a solve with the
factors. More than one solve can be performed with the same
spldlt_fkeep.

	Once all desired solutions have been performed, free memory with
spldlt_free().

	If \(A\) is unsymmetric:

	Call splu_analyse() to perform a symbolic factorization, stored
in splu_akeep.

	Call splu_factor() to perform a numeric
factorization, stored in splu_fkeep. More than one numeric
factorization can refer to the same splu_akeep.

	Call splu_solve() to perform a solve with the
factors. More than one solve can be performed with the same
splu_fkeep.

	Once all desired solutions have been performed, free memory with
splu_free().

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 SyLVER: Symmetrically-structured Sparse Direct Solver

 		
 Introduction

 		
 Purpose

 		
 Usage overview

 		
 Installation

 		
 Quick Start

 		
 Third-party libraries

 		
 SPRAL

 		
 METIS

 		
 hwloc

 		
 Runtime system

 		
 BLAS and LAPACK

 		
 API (Fortran)

 		
 General

 		
 SpLDLT

 		
 Data types

 		
 Options

 		
 Information

 		
 API (C)

 		
 General

 		
 SpLDLT

 		
 Data types

 		
 Options

 		
 Information

 		
 Examples

 		
 SpLDLT

_static/up.png

_static/up-pressed.png

